CHAPTER ONE

SET

A set is defined as a collection of items

The Number System:

- 1. Our number system can be divided into the following group of set of numbers.(1) The Set of integers i.e. {...... -3,-2,-1,0,1,2,3,......}.
- Integers refer to negative and positive whole numbers as well as zero.
- 2) The set of whole numbers i.e. {0, 1,2,3,4......}.
- Whole numbers are numbers which are greater than zero, including zero itself.
- 3) The set of natural or counting numbers i.e. {1, 2,3,4,5}.
- Natural numbers are number from 1 upwards.
- 4) The set of odd numbers i.e. {1, 3,5,7,9}.
- Odd numbers are those numbers, which when divided by 2 always give us a remainder or a decimal, but 1 is an odd number.
- 5) The set of prime numbers i.e. {2, 3, 5, 7, 11, 13, 17.....}.
- Prime numbers are those numbers which have only two factors. Since 7 has two factors which are 1 and 7, then it is a prime number.
- On the other hand, $9 = 3 \times 3$ and $9 = 1 \times 9 \Rightarrow 9$ has four factors, which are 3 and 3, as well as 1 and 9. For this reason it is not a prime number.
- 6) The set of composite numbers i.e. {4, 6, 8,9,10}.
- These are numbers which have two or more factors apart from itself and 1. For example apart from 1 and 20, 20 which is a composite number has four other factors which are {4, 5} and {2, 10}.
- Also apart from 1 and 6, 6 which is a composite number has two other factors which are 2 and 3.
- 7) The set of even numbers i.e. {2, 4,6,8,10,12}.
- These are those numbers, which can be divided by 2 without a remainder or a decimal.
- 8) The set of irrational numbers i.e. $\{\dots, \pi, \sqrt{3}, \sqrt{5}, \frac{1}{3}, \frac{2}{6}, \dots\}$.

- This consists of square roots of numbers which does not give us whole numbers, as well as fractions without specific values. For example $\frac{1}{3}$ = 0.3333333 and $\frac{2}{3}$ = 0.6666
- Lastly π or pie, even though taken to be = $\frac{22}{7}$ or 3.14, really has no fixed value.
- 10) Set of real numbers i.e. $\{.....-3,-2,-1,0,1,2,3.5,\sqrt{7}.....\}$, which consists of all the various sets just discussed.

FACTORS OF A GIVEN NUMBER:

- These are whole numbers which can divide that given number, without any remainder, with the given number being the highest factor. Examples are;(1). The factors of 6 = 1,2,3,6 (2) The factors of 8 = 1,2,4,8 (3) The factors of 30 = 1,2,3,5,6,15,30.

MULTIPLE OF A GIVEN NUMBER:

- If y is our number, then the multiples of y= $1 \times y$, $2 \times y$, $3 \times y$, $4 \times y$ = y, 2y, 3y, 4y; For example, the multiples of $2 = 2 \times 1$, 2×2 , 2×3 , 2×4 , 2×5 = 2, 4, 6, 8, 10 Also the multiples of $5 = 5 \times 1$, 5×2 , 5×3 , 5×4 ... = 5, 10, 15, 20, 25
- Q1. Find the set of natural numbers from 1 to 12.

Soln

The set of natural numbers from 1 to $12 = \{1,2,3,4,5,6,7,8,9,10,11,12\}$ or $\{1,2,3,4,\ldots,12\}$.

- Q2. Find the set of the even natural numbers from 1 to 12.
- NB: First find the set of natural numbers from 1 to 12, and select the even ones among them.

Soln

- \Rightarrow {Natural numbers from 1 to 12} = {1, 2, 312}.
- \Rightarrow {Even natural numbers} = {2,4,6,8,10,12}.
- Q3. Determine the set of the multiples of 3, which are less than 15.

Soln

 $\{\text{Multiples of 3 less than 15}\} = \{3,6,9,12\}.$

Q4. Find the set of the odd multiples of 3 up to 18.

Soln

The multiples of 3 up to $18 = \{3,6,9,12,15,18\}$ and select the odd ones among them \Rightarrow { Odd multiples of 3 up to $18\} = \{3, 9, 15\}$.

The Number of Elements:

The number of elements of a set A is written as n(A).

Therefore if $A = \{a,b,c\}$, then n(A) = 3 and also if $Y = \{1,2\}$, then n(Y) = 2.

Types of Sets:

There are various types of sets and these are:

1. A Finite set:

- This is a set whose members can be counted, and an example is the set of people within a family.

2. An Infinite set:

- This is a set which contains an uncountable number of items or elements.
- An example is the set of the number of buckets of water that can be fetched from the sea.

3. Equal Sets:

- If A = [1,2,3] and $B = \{2,3,1\}$, then A and B are said to be equal sets.
- Two sets are said to be equal, if they contain the same elements or items, no matter the order or manner in which they have been arranged.
- Also if $Z = \{a,b,c,d\}$ and $X = \{b,a,c,d\}$, then Z and X are equal sets.

4. Equivalent sets:

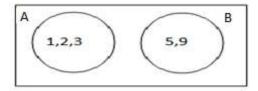
- These are two sets, in which the number of items or elements found in each is the same.
- For example if $X = \{a,b\}$ and $Y = \{1,2\}$, then X and Y are equivalent sets.

5. The Null Set:

- This is a set which has no members, and it is represented by the symbol {} or Ø.
- For example {People who live in the sea} = ∅

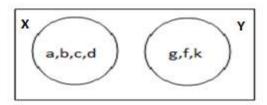
6. Disjointed Sets:

- These are two sets which do not contain any element in common.
- Example 1. If $A = \{1,2,3\}$ and $B = \{5,9\}$, then A and B are disjointed sets, which can be represented on a Venn diagram as shown next:



Example 2

If $X = \{a,b,c,d\}$ and $Y = \{g,f,k\}$, then X and Y are disjoined sets which can be represented on a Venn diagram as

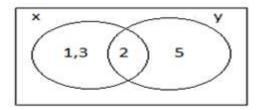


7Jointed Sets:

- Theses are two sets which contain one or more elements in common.

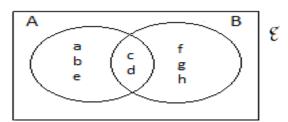
Example (1):

If $x = \{1, 2, 3\}$ and $Y = \{2, 5\}$, then X and Y are jointed sets, which can be represented on a Venn diagram as:



- Example 2.

If $A = \{a,b,c,d,e\}$ and $B = \{c,d,f,g,h\}$, then A and B are jointed sets, which can be illustrated on a Venn diagram as:



8) The Universal Set:

- This is represented by the symbol or U. It is a set which is always bigger than the set under consideration. For example if our set under consideration is {Fantis}, then any of the following sets can be Chosen as the universal set: A = {Akans}, B = {Ghanaians} and C= {Africans}.
- Also if our set under consideration is $\{1,2\}$, then any of the following sets can be chosen as the universal set: A = $\{1,2,3\}$, B = $\{1,2,3,4,5\}$, C = $\{1,2,4,4,5\}$, C = $\{1,2,4,4$

9) Subset:

- If $A = \{1,2,3\}$ and $B = \{2,3\}$, then we say that B is a subset of A, which is written as $B \subset A$ or $A \supset B$. For B to be a subset of A, then(i). All the members of B must also be members of A.
- (ii). The set A must contain one or more elements which are not found in B.

Example 1.

If $Z = \{1,2,3,4,5\}$ and $W = \{2,5\}$, then $W \subset Z$.

Example 2.

- If $Y = \{a,b,c,d,e\}$ and $x = \{b,d,e\}$, then $X \subset Y$.
- But if A = $\{1,3,7\}$ and B = $\{3,8\}$, then B is not a subject of A, which is written as B $\not\subset$ A or A $\not\supset$ B.
- This is due to the fact that 8 is not a member of A.
- Also if X = $\{1,2,3,4,5\}$ and Y = $\{1,2,9,8\}$ then Y $\not\subset X$, since 9 and 8 are not members of X.
- Q1. The universal set U is given as $U = \{1,2,3,4,5,6,7,8,9,10\}$. Determine which of the following sets are subsets of the given universal set:

i.
$$A = \{1,2,3\}$$
ii. $B = \{5,6,10\}$ iii. $C = \{8,10,44,12\}$ iv. $D = \{1,8,20\}$ v. $E = \{2,3,15\}$

NB: Before a set A can be a subset of a set B, then.

i. All the members of A must also be members of B. ii. The set B must contain one or more items, which are not found in A.

Soln

- i. $A = \{1,2,3\}$. Since all the members of A are also found in the given universal set, then A is a subset of the given universal set.
- ii. $B = \{5,6,10\}$ }. Since all the members of B are also found in the given universal set, then B is a subset of the given universal set.
- iii. $C = \{8,10,11,12\}$. Since some of the members of C (ie 11 and 12) cannot be found in the given universal set, then C is not a subset of the given universal set.
- iv. $D = \{1,8,20\}$. Since 20 cannot be found in the given universal set, then D is not a subset of the given universal set.

Q2. You are given the set $M = \{a,b,c,d,e\}$. Determine which of these sets are subsets of:

i.
$$X = \{a,b,c\}$$

iii.
$$N = \{c,d,e\}$$

soln

i. $X = \{a,b,c\}$. Since all the members of the set X are also members of the set M, then X is a subset of M.

ii. Y = {a,e,k,m}. Because some of the members of Y are not members of M, then Y is not a subset of M.

iii. $N = \{c,d,e\}$. Since all the members of N are also members of M, then N is a subset of M.

(iv) K is not a subset of M, because g is not found in M but found in K.

Q3. If $Q = \{1,2,3,4\}$, write down all the possible subsets of Q.

Soln

The possible subsets are:{1,2,3}, {12},{2,4}, {2,3,4}, {4,1}, {3,1}, {3,2}, and {3, 4}.

Q4. If $P = \{1,2,3,4\}$, write down all the subsets of P having exactly two elements.

Soln

{1,2}, {13}, {1,4}, {2,3}, {2,4} and {3,4}.

The intersection:

The intersection of two sets A and B is written as $A \cap B$.

This is made up of the set of those elements, which can be found in both A and B.

Example 1)If $X = \{a,b,c,d\}$ and $Y = \{b,c,g,h,m\}$, then $X \cap Y = \{b,c\}$

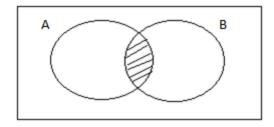
Example 2

If A =
$$\{1,2,3,4,5,6\}$$
 and B = $\{3,4,5,8,9,10\}$, then A \cap B = $\{3,4,5,\}$

Example 3If A = $\{1,2,3\}$ and B = $\{5,6,7\}$, then A \cap B = $\{\}$

•

Representation of A ∩ B on a venn diagram:



The shaded portion represents $\mathsf{A} \cap \mathsf{B}.$

NB:

1). If $A \cap B = \{\}$, i.e. if the intersection of the sets A and B is equal to the empty set, then A and B are disjointed sets.

i.e.



2). If $A \cap B \neq \emptyset$ i.e. if the intersection of A and B is not equal to the null set, then A and B are jointed sets.

